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Abstract—This work presents a synthetic, automated global
soil quality index (GSQI), applied in the province of Jaen (Spain).
This index has been built following a novel methodology, able to
integrate quality indicators of both morphological (representing
imprecise concepts) as analytical types, against other measures
previosly established in the bibliography. This new methodology
is based on an advanced data analysis statistical technique,
Categorical Principal Component Analysis (CatPCA), applied to
non numerical (ordinal or nominal) morphological indicators,
properly transformed by means of optimal scaling, quantified
and managed along with numerical, analytical indicators. Indi-
vidual (morphological and analytical) indicators integration into
a global index has been locally validated with olive grove soil
samples from Atanor Valley (Sierra Magina Natural Park, Spain).
This validation process permits the quality comparison between
conventional managed olive soils and organic managed ones, the
latter clearly showing a better value. This procedure means a
great advance in the establishment of a quality improvement for
soil degradation due to olive grove conventional management,
encouraging more sustainable, soil-protecting, agricultural prac-
tices. The discussed methodology can be applied in other highly
cultivated geographical areas in order to improve sustainability
in agricultural systems.

Keywords—Soil quality index, Morphological soil properties,
Categorical principal component analysis, Scoring functions.

I. INTRODUCTION

Fusion of analytic and linguistic data, usually found in
agrosystems, obtained from laboratory analysis, field morpho-
logical descriptions, or even surveys, is of special interest in
a scientific-technical environment, its final objective being the
discovery of useful knowledge for both agricultural technics
and farmers. It is necessary to properly manage and analyze
this information, due to its high variability and uncertainty,
inherent to its spatial distribution in agricultural groves and
field sampling and description.

A specially interesting issue, from the agro-evironmental
point of view, is that of soil quality, very related with produc-
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tivity, fertility, and soil degradation, as well as environment
quality [1]. In the case of agrosystems, soil quality means to
indefinitely mantain soil as a crop resource, avoiding degrada-
tion.

As mentioned in [2], a soil quality indicator can be con-
sidered as a feature related with one or more soil functions,
very conditioned in turn by environmental factors. Moreover,
it must be correlated with an important number of physical,
chemical or biological functions, easy to measure and re-
spond to changes in management. Indicators should explain
as much possible variability of the studied system; present
significantly different values in systems undergoing changes in
management, have a quick response to these changes, or the
agricultural system as a whole, requiring a long recovery time
to the initial state, and should be easily measurable and non-
redundant [3], [4]. This set of indicators is called the minimum
data set, and defines the operation of a system optimally and
with minimal loss of information. The process of quantifying
indicators is called scoring. Different types of scoring functions
for key soil indicators generate linear or curve (non-linear)
funtions, which in turn represent the algorithms that best define
the relationship between the indicator numerical domain and
the function evaluating soil [5]. Furthermore, by means of
scoring the indicator values are normalized into a range of 0.1
to 1, the latter value corresponding to the optimal quality. Each
indicator has its best scoring function and in many cases it is
determined by the researcher based on his expert knowledge,
and therefore of a somewhat arbitrary way.

Many soil quality indicators that can be useful are of
morphological type (e.g., structure, consistency, color, etc. . . ),
and being not numerically qualitative, and therefore with a
high degree of uncertainty and imprecision in the measure-
ment, have been little used, assuming a significant loss of
information. By means of Nonlinear Principal Component
Analysis (NLPCA), and one of its main algorithms, Categori-
cal Principal Components Analysis (CatPCA), it is possible
to manage non-numeric variables, as applied for first time
in [6]. Thus, non-numeric variables, through a procedure



of optimal scaling, are quantified and managed along with
numeric properties commonly used in classic PCA. On the
other hand, maximizing the amount of explained variance, the
number of indicators to be used can be reduced, selecting the
most important, and hence optimizing the process of scoring
nominal and ordinal indicators automatically, along with the
numeric ones. Finally, the numerical assessment of soil quality
is the result of integrating individual indicators into a single
value (indexing), as the result of mathematical procedures that
integrate the previously selected and quantified (in the case of
morphological) indicator variables.

In [7] and [8] it is shown that ecological crop management
affects positivelty soil quality, and this induces an olive tree
health improvement, an important aspect regarding the system
agroecological sustainability. Nevertheless, these works use
sophisticated techniques (e.g., infrared spectroscopy, X-ray
diffraction, pyrolisis, etc.), completely out of range for farmers.
The main purpose of this paper is the development and
validation of a new global soil quality index (GSQI), based
on the use of CatPCA over both morphological (categorical)
and analytical (numerical) indicators, obtained from a regional
database. This index allows us to evaluate soil quality in a easy,
low cost, way, with the same reliability as other sophisticated
measures in the field of advanced scientific research, according
to farmers available measures (usual analysis, field linguis-
tic descriptions). It aims to establish a comprehensive and
automatic procedure for computing a soil quality index able
to be integrated in a user-friendly Decision Support System.
Validation will be performed on olive grove agrosystem in Jaen
(Spain), where it is present a huge negative impact on soil
quality, mainly soil erosion, caused by conventional intensive
agriculture carried out for decades.

II. MATERIAL AND METHODS

A. Data sources

A soil database with 131 profiles was made from the com-
bination of 10 existing soil surveys [9]–[19]. On this database,
a total of 41 soil quality indicators (SQI) was present, from
which 18 indicators were field soil morphological indicators
and 23 were analytical soil quality indicators. The soil quality
index was generated only from superficial horizons (Ah and
Ap types) with mean thickness of 18 cm. Regarding Land
Use Types (LUTs), 8 types were considered, characterized
by the classification scheme proposed by FAO [20] including
modifiers related to crop type, vegetation classification and
human influence. These types are: (1) Mediterranean Xero-
morphic Woodland (MXW), (2) Mediterranean Xeromorphic
Scrub (MXS), (3) Little-disturbed Forest (LDF), (4) Pine Plan-
tation Forestry (PPF), (5) Olive groves including Conventional
Olive Groves (COG), (6) Alpha Grass communities (AG), (7)
Pastures and degraded grassland (PDG), and (8) frequent but
disperse Herbaceous Annual Cultures (HC).

B. Global Soil Quality Index (GSQI) calculation

To obtain and validate the final soil quality index proposed
in this work, a procedure divided into 6 different steps is
applied:

Soil indicator Type Scale
Sand(%) Analytical Number
W33(%) Analytical Number
O.C.(%) Analytical Number
W1500(%) Analytical Number
Ntotal(%) Analytical Number
CaCO3eq(%) Analytical Number
CEC (cmol + kg−1) Analytical Number
Dry value Morphological Ordinal
Dry hue Morphological Nominal
Root abundance Morphological Ordinal
Texture Morphological Nominal
Clay(%) Analytical Number
Bulk density(gcm−3) Analytical Number
Stickiness Morphological Ordinal
Moist value Morphological Ordinal

TABLE I. SELECTED MORPHOLOGICAL AND ANALYTICAL
INDICATORS IN THE BUILDING OF GSQI. ABBREVIATIONS: W33:

MOISTURE CONTENT AT FIELD CAPACITY; OC : ORGANIC CARBON;
W1500: MOISTURE CONTENT AT PERMANENT WILTING POINT; Ntotal :

TOTAL NITROGEN; CaCO3eq : CARBONATES; CEC : CATION EXCHANGE
CAPACITY

1) Indicator selection: Minimum data set: According to
the correlation matrix obtained on an exploratory CatPCA
(correlations between indicators higher than r = ±0.5), most
relevant soil indicators were selected from the 41 available.
Table I lists these 15 relevant indicators.

2) Indicator scaling: Using CatPCA [21] nominal and
ordinal morphological indicators were transformed into nu-
merical ones. Also, optimal scalings yj , Variances Accounted
For per variable (V AFj) and per component (V AFs) were
obtained in the process (being s the number of dimensions in
CatPCA). Its fitness was measured by Cronbach’s α, with a
value near to 1, ensuring a valid percentage of variance kept
by the model [22].

3) Interpretation of PC in terms of soil quality: With
the generated model, it is possible to interpret the resulting
components in terms of soil quality [23]. With the lowest P-
value in a Kruskal-Wallis test, it was found that the soil quality
component holds those scores that best discriminate between
land use types.

4) Normalized scores: We need to obtain a score sij for
each horizon i and indicator j, ranging from 0.1 to 1, so
horizon quantifications qij had to be normalized. The loadings
of the model for each qij indicate whether the component
increases or decreses soil quality. In the former case, a more
is better function is applied:

sij = smore is better(qij) = 0.1 +

(
qij − yjmin

yjmax − yjmin

)
× 0.9

(1)

In the second case (when the component decreses soil
quality), a less is better function is used:

sij = 1.1− smore is better(qij) (2)

where yjmin and yjmax are the minimum and maximum
category quantification values of yj (yjmin and yjmax should
be considered as the reference values from [24]).



5) GSQI calculation: Now all the needed elements are
under appropriate constraints to compute the horizon quality
index GSQIi as a linear combination of scores and weights.
The weighting factors are selected according to certain strate-
gies, detailed by [5], [25], and applying the method explained
in [26]. The wj weight factor is the V AFjs, i.e. the vector
coordinate of indicator j in the soil quality component. Thus,
GSQI is calculated for the horizons in the soil data as specified
in the following equation, with a subsequent re-scale to unity:

GSQIi =
m∑
j=1

sijwj (3)

6) GSQI validation: It only remains to check the validity of
the obtained index. To this end, olive grove data not included
in the original data set has been used. These measurements
comes from Atanor valley [8], providing data about 10 A type
horizons from two different olive soil treatments: COG and
Organic Olive Groves (OOG), with N = 20, the latter being
not included in the original data set due to its lack of extension,
making it not statistically relevant in previous studies. The data
was sampled and the soil properties collected from estimations.
The obtained categories for each horizon were transformed
according to optimal scalings yj from CatPCA, so normalized
scores were produced. Using the same weight factors and
these scores, final GSQI values were calculated. Student’s-t
test (P < 0.05) was applied to obtain statistical differences
between the means of GSQI for both treatments.

III. INDEX DEVELOPMENT

A model of 3 principal components with eigenvalues higher
than one was selected. It gives to a good fit, with a Cronbach’s
α of 0.971 [21]. Table II shows the component loadings and
variances explained by components and individual variables.
The 3 components combined explained as much as 71% of
system variance. This improves the total percentage of system
variance with respect to previous studies by [27], [28].

Principal Component PC1 PC2 PC3 V AFj PV AFj

Analytical
Sand(%) -.096 .851 -.121 0.748 4.986
W33(%) -.624 -.663 -.122 0.843 5.622
O.C.(%) -.868 -.033 -.108 0.767 5.111
W1500(%) -.585 -.657 -.170 0.804 5.357
Ntotal(%) -.163 .017 .946 0.923 6.150
CaCO3eq(%) .740 -.160 -.116 0.587 3.914
CEC (cmol+kg−1) -.719 -.418 .119 0.706 4.707
Clay(%) .110 -.837 .116 .726 4.838
Bulk density(gcm−3) -.039 .051 .976 .957 6.377
Morphological
Dry value .915 -.132 -.006 0.855 5.700
Dry hue -.498 .215 .049 0.297 1.977
Root abundance -.682 .296 -.095 0.562 3.748
Texture -.125 .884 .061 0.800 5.335
Stickiness .115 -.403 .151 0.198 1.322
Moist value .902 -.269 .029 0.886 5.909
V AFs (eigenvalue)# 4.993∗∗∗ 3.666∗ 1.998ns 10.658
PV AFs (percent) 33.3 24.4 13.3 71.053

TABLE II. CATEGORICAL PRINCIPAL COMPONENT ANALYSIS
(CATPCA) OF FIELD MORPHOLOGICAL SOIL INDICATORS: COMPONENT

LOADINGS AND VARIANCE EXPLAINED BY COMPONENTS AND VARIABLES.
#DIFFERENCES BETWEEN LAND USE TYPES: KRUSKALL-WALLIS TEST.
∗SIGNIFICANT AT P < 0.05; ∗∗∗SIGNIFICANT AT P < 0.001; NS = NOT

SIGNIFICANT

In general, analytical variables show a higher explanatory
power (PV AFj of 47% opposite 24% for morphological).

Fig. 1. Optimal scalings of soil indicators. Legend for ‘Texture’ attribute: c:
clay; sc: sandy clay; l: loam; scl: sandy clay loam; sicl: silty clay loam; sic:
silty clay; cl: clay loam; sil: silty loam; sl: sandy loam; ls: loamy sand.

Thus, variables Ntotal and Bulk density are the ones ex-
plaining more variance (percentage over 6%). Nevertheless,
morphological variables relating soil color (i.e. moist and dry
values) also show a relatively high explanatory power.

Through a Kruskal-Wallis test, differences between dis-
tributions of PC1, PC2 and PC3 component scores values
for each LUT were trialled. It was assumed that the most
significant component in this test was the one most related
to soil quality. This approximation is also followed by [23]
when considering the soil quality component. According to
this, PC1, with P < 0.001 (Table II) was selected.

The optimal scalings given by the model are shown in
Figure 1. Numerical indicators show a linear behavior, while
morphological ones vary between smooth nonlinear tendencies
(i.e. dry value) to markedly nonlinear ones (i.e. root abun-
dance). The ordering of nominal variables given by the model
show a logical tendency regarding their physical mean. In
the case of texture, categories are ordered from clay (clayey
texture, c) to sand (loamy sand texture, ls). In the case of dry
hue, colors are ordered from yellow (2.5Y) to red (5YR), even
when intense red (2.5YR) quantification is lightly below red.
This effect should be explained by human eye saturation when
perceiving intense red by daylight, as supposed by [29].

According to [30], nonlinear transformations should be
interpreted as differences in information content for each
category, as they represent the category centroid projections
over the variable vector (given by the coordinates in table
II). This way, centroids related to highly overlapping clusters



show very close optimal scaling values (Figure 1). Inversely,
objects in highly detached categories (for the same variable),
are characterized by sudden jumps between quantifications.
An example is root abundance, with a quantification value of
1.886 for ‘many’, while the rest of the categories had the same
value (-0.599). This allows the evaluation of the amount of
information carried out by each category, not just the amount
of total information explained by the whole indicator, given
by its V AFj . As the soil quality component PC1 accounted
for most of the system variance (33%, Table II), it is possible
to conclude that categories with relatively high scalings with
respect to the others (in absolute values), show a greater
response to soil quality, being it negative or positive terms.
This capability to assess the ‘weight’ of each category respect
to the soil quality has not yet been tried by other indexing
methodologies.

For the case of analytical indicators, the category points
represent intervals in the variable numerical domain. Intervals
obtained in the discretization process are consistent with
interpretation intervals given by the experts. E.g., sand shows
a increment of 10% (Table II), agreeing with texture categories
proposed by [31]. In this sense, authors like [22] use CatPCA
as a discretization method for numerical domains.

x y Equation r
Moist value Organic carbon y = -0.8856x + 0.0504 -0.754

CaCO3eq y = 0.7464x - 0.0269 0.700
Root abundance Organic carbon y = 0.8914x - 0.081 0.601

Texture W1500 y = -0.4691x + 0.5324 - 0.475
CEC Dry value y = -0.493x + 0.3539 -0.573

TABLE III. SOME SIGNIFICANT (P < 0.001) CORRELATIONS
BETWEEN TRANSFORMED FIELD SOIL MORPHOLOGICAL INDICATORS AND

ANALYTICAL PROPERTIES IN THE JAEN DATABASE

Table II also permits the interpretation of the principal
components. The first component was the soil quality com-
ponent. It positively correlated with the moist and dry value
(component loadings of 0.902 and 0.915, respectively) and
carbonates (loading of 0.740), and negatively with the organic
carbon (loading of -0.868) and, in lesser extent, CEC and root
abundance (component loadings of -0.719 and -0.682, respec-
tively). Thus, when the value increases and the soil become
clearer (e.g., value 8 is white color), a loss in its fertility
(drop in organic matter, less roots and CEC decreasing) can
be revealed. Also, the negative correlation between carbonates
and CEC could be highlighted; when calcium from carbonates
saturates the exchange complex, a loss in soil fertility occurs.
As stated above, this component could be defined as the soil
quality component where soil quality decreases with increasing
component scores (fewer roots, lighter, less fertility, etc.).

A remarkable point is that by means of morphological
indicators quantification, rigorous relations can be established,
from the mathematical point of view, between these and
analytical indicators. As an example, Table III shows some
simple linear regression models between both parameter types.
Interesting correlation were found, for instance, between tex-
ture and W1500 (r = −0.475, P < 0.001). When texture
increased (towards lighter textures) soil aptitude to retain water
in its micropores (< 0.2µm diameter) decreases. Bearing in
mind the nominal nature of texture, this numerical relationship
would be very difficult or impossible to obtain without optimal
scalings.

Fig. 2. Scores of soil indicators. See figure 1 for ‘Texture’ attribute legend.
(*) marks indicators where ‘less is better’ (eq. 2) was applied

Next step in index building was the optimal scalings
scoring. The numerical values of optimal scalings were nor-
malized between 0.1 (poorest soil quality) and 1 (best soil
quality), depending on the relative signs of the loadings of
each indicator in the soil quality component (PC1). Hence,
we applied less is better (eq. 2) when the indicator showed
a positive loading on PC1, which was interpreted above as a
loss of soil quality, changing from a monotonically growing
(Fig. 1) to a monotonically decreasing function (Fig. 2), but
maintaining its form. When more is better (eq. 1) is applied
(negative loadings of the indicator on PC1), the functions in
Fig. 2 maintain this order.

The normalization of categories quantifications permitted
to normalize as well the qij (soil horizons) quantifications.
Starting from these and the variables eigenvectors in the soil
quality component (V AFjs, where s = PC1, Table II), the
soil quality index GSQIi (eq. 3) was obtained for each hori-
zon. The mean values for each LUT index are shown in Table
IV. LUTs were ordered according to their soil quality, high
to low: LDF (mean GSQI of 0.940) > AG (0.899) > PPF
(0.732) > MXW (0.673) > MXS (0.609) > PDG (0.528)
> HG (0.278) > COG (0.263). This ordering correctly
reflects the ecosystem disturbing degree, according to extensive
studies of the area ecology, as [32]–[35].

IV. INDEX VALIDATION

We used Atanor Valley soil data as validation set, in
order to find any significant difference between soil quality
in two olive grove types: conventional (COG) and organic



N Mean SD
LDF 5 0.940 0.094
AG 5 0.899 0.091
PPF 6 0.732 0.108

MXW 16 0.673 0.123
MXS 5 0.609 0.119
PDG 9 0.528 0.085
HC 14 0.278 0.106

COG 71 0.263 0.098
TABLE IV. GSQI VALUES (MEANS AND STANDARD DEVIATIONS SD)

FOR LAND USE TYPES

Fig. 3. Box-and-whiskers plot of Global Soil Quality Index (GSQI), applied
to Organic olive groves (OOG) and Conventional olive groves (COG) in the
validation set (Atanor valley)

(OOG). Mean differences were significant in a Student’s-
test (P = 0.023). The box-and-whiskers diagram in figure
3 shows the results. GSQI mean value for COG is of 0.218, a
bit lower than the one found in the original data set, from
which the index was calculated. On the other hand, OOG
shows a GSQI higher value, 0.362, indicating that ecological
management of olive grove soils gradually improves in quality,
clearly stepping aside of conventional management. These
results have already been reported by other authors [27], [28],
[36], [37], even though these studies were exclusively based
on analytical variables. Moreover, as noted before, [7] and [8],
where advanced techniques were applied in the same location,
led to similar results. The advantage is that GSQI measure is
simpler and more accessible than these techniques.

From the methodological point of view, optimal scaling
functions permit to automatically relate soil quality with indi-
cator domain, being the latter either numerical or categorical.
This is accomplished by optimizing the variance explained
by the system. As a result, it is an improvement on scoring
functions applications over soil quality indexing, a process
highly dependant on expert knowledge [5], [38]. Thus, this
automatic process simplifies the calculation of soil quality
indices, as it is not required intensive participation of soil
experts. Moreover, as easy to estimate, cheaper and suitable,
parameters as morphological ones are included, the farmer can
be more involved in the evaluation process of soil quality.
Advances have been made in this sense. E.g., [39] developed

score cards for untrained farmers evaluation of their olive
grove soil degradation. Nevertheless, as pedo-morphological
parameters were not taken into account, this type of data
would be more difficult to interpret and merge with scientific
knowledge than pedological data [40], as has been proven in
this paper.

V. CONCLUSIONS

As stated in [41], one of the main features of a soil
quality index must be its applicability in a real scenario, at
farmers level, in this case. An index to integrate both analytical
(quantitative) and morphological (qualitative) indicators into a
global measure of soil quality has been proposed. The process
is automatically driven, requiring little expert knowledge about
soil, and extending its applicability to very interesting real
scenarios as olive cultivation in the South of Spain. In this
sense, the index can be applied by farmers themselves, and
the indicators being soil survey standard parameters (i.e., soil
maps), fusion with scientific knowledge is immediate. More-
over, it can be seen as an alternative in those scenarios where
no other expensive and complex measures could be applied.
This allows, as well, to apply the farmer (user) knowledge
about his property at a higher scale, in regional or national land
planning. This type of numerical and quantitative approach to
soil quality could be highly useful for modeling and prediction
in future physical, agronomical or socio-economic scenarios.
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